How to build better more secure
KVM with off-the shelf hardware

An experiment in security-by-design

Tim Panton (tim@pi.pe) (CTO pi.pe gmbh)

mailto:tim@pi.pe

Who

Tim Panton: CTO pi.pe GmbH

* Internet Security scanning service 20 years ago

 VolP 15 years ago

* |oT secure stack for cameras - last 4 years

tim@pi.pe - @steely_glint

mailto:tim@pi.pe

Goal

Remote access to server assets

* Like the screen/kbd trolley you used to wheel around a DC
 But on the internet

* Plug hardware into hdmi + usb to get access

 Manage a firewall appliance - but not through it!

 Cheap low power arm servers don’t do LOM

 Easy to use

tim@pi.pe - @steely_glint

mailto:tim@pi.pe

Threat model

What are we protecting?
What are we assuming?
Protecting from whom?

Protect Service (don’t provide new attack vectors)
Protect Auth (don’t allow collection of passwords etc)
Protect Data (don’t allow interception in flight)

Assume ‘lazy but not evil’ users

Assume untrusted infra structure

Assume ‘semi secure’ location - e.g. DC rack with CCTV

Main threat is external (over Network) from:
 Automated scans

* Active targeting by motivated individuals
(assymentry: $1k buys a lot of motivation)

tim@pi.pe - @steely_glint

mailto:tim@pi.pe

Threat minimization

Three Iintersecting strategies

 Block known attack vectors (and adjacent)
* Buffer overun
e [ype trickery
* |nput validation
* Minimize attack surface
o Simplify interfaces
* Reduce optionality
 Minimize secret data usage
 Best practice
* Leverage standards

* Jooling, code etc

tim@pi.pe - @steely_glint

mailto:tim@pi.pe

Result
(Video)

* 1024x768 @30

 From hdmi Ubuntu x86
 To M1 Mac safari

* Via Raspl 4

capturing hdmi
and emulating USB mouse + kbd

e ~1.5mbit/s bitrate.

Credit

2 Projects that led the way

e https://tinypilotkvm.com

e https://github.com/pikvm/pikvm

* Both use similar hardware (pi4) but stream Jpegs over http (over VPN)
 No code derived from either project - just inspiration

* |Instead | leveraged |pipe|’s lIoT Video stack

tim@pi.pe - @steely_glint

mailto:tim@pi.pe
https://tinypilotkvm.com
https://github.com/pikvm/pikvm

Big picture...

Public Internet

Firewall ‘
Raspberry Pi 4

Video

USB3 HDMI

Web Browser ith WebRTC

Ipipel - muxcam - Live

Capture

Mouse/kbd Emulation Ciei=2 Keyboard and mouse

Big picture...

Public Internet

Firewall ‘
Raspberry Pi 4

Video

USB3 HDMI

Web Browser ith WebRTC

Ipipel - muxcam - Live

Capture

Mouse/kbd Emulation Ciei=2 Keyboard and mouse

“Air Gap”

Air Gap (video)

No, not really but close....

« HDMI capture card ($14)
 Cheap, dumb, predictable, v4|2 compatible
 Jo linux itis a 1080p @30 camera device
 USB (although CSI interfaces possible)
* Pihas hardware h264 encoder that supports 1080p @30

* bitrate 10% of mjpeg in typical useage (~2mbit/s vs 20)

tim@pi.pe - @steely_glint

mailto:tim@pi.pe

Big picture...

Public Internet

Firewall ‘
Raspberry Pi 4

Video

USB3 HDMI

Web Browser ith WebRTC

Ipipel - muxcam - Live

Capture

Mouse/kbd Emulation Ciei=2 Keyboard and mouse

“Air Gap”

Air Gap (keyboard+mouse)

No, not really but close....

* Pi4 supports gadget mode on USB C port
(also on usb of pi zero W)

 HID emulation
 Keyboard and mouse
* With config device appears as /dev/hidg{01}

* Simple write of 4 or 8 bytes to device produces
klbbd emulation

» Server can’t tell this isn’t a keyboard + monitor + mouse

tim@pi.pe - @steely_glint

mailto:tim@pi.pe

Big picture...

Public Internet

Firewall ‘
Raspberry Pi 4

Video

USB3 HDMI

Web Browser ith WebRTC

Ipipel - muxcam - Live

Capture

Mouse/kbd Emulation Ciei=2 Keyboard and mouse

Transport Protocol -> WebRTC

Don’t roll your own cryptography or protocols!

e Avallable on all browsers

* No client install needed (so no new risks at client end)
 \Well studied protocol

 E2E encrypted with self-signed x509s for auth

* Built for low latency/high quality video

 Used a lot for screenshares - so geared up for this

« WebRTC traffic is expected on networks

tim@pi.pe - @steely_glint

mailto:tim@pi.pe

WebRTC security properties

Default secure.

* No open ports until message exchange

 Open port is random

 Works behind NAT - so no IP to scan

 Opened port is protected by otp

« Selected port is verified with DTLS handshake

 DTLS extension uses key material to derive media session key

e Provided SCTP channels over DTLS for non-media data

tim@pi.pe - @steely_glint

mailto:tim@pi.pe

Big picture...

Public Internet

Firewall ‘
Raspberry Pi 4

Video

USB3 HDMI

Web Browser ith WebRTC

Ipipel - muxcam - Live

Capture

Mouse/kbd Emulation Ciei=2 Keyboard and mouse

Ipipe| WebRTC agent

Cleanroom implementation for small linux devices

* |n Java because:
e Strong typing prevents many vulns
 Buffer overflow protection
o Stack smashing protection
 Mature ecosystem (tools etc)

e Performant on small machines

tim@pi.pe - @steely_glint

mailto:tim@pi.pe

Defence in depth
Extra steps taken in |pipe| WebRTC agent

* No reflection - config files can’t control object creation

* |nput parser does string compares not regexps

* Only exchanges packets with known peers

* Only opens media sessions with permitted known peers
 Permitted peers must have public key Iin local keystore
* Acts as a proxy for local service - via sockets not libs

o GitHub dependency alerts for upstream CVEs

tim@pi.pe - @steely_glint

mailto:tim@pi.pe

Auth

Self signed Certs with proximity verification

* Auth is decentralized

 X509s created, stored and checked locally
 Exchanged using DTLS handshake

» Validated by nonce in a QR code (proof of proximity)
* QR shown on hdmi of Pi.

* QR scanned on laptop or phone/iPad

e Access can then be lent to other devices

tim@pi.pe - @steely_glint

mailto:tim@pi.pe

Proximity as proof of ownership

Things as tokens.

* Often we use centralized services to generate permission tokens
Kerberos etc.

* InloT we can use a Thing as a token.

 The owner is the first person to plug it in

» How does the device know it is you?

» Offers localized one time cryptographic handshake

 E.g scan a QR to prove you have Line of Sight

tim@pi.pe - @steely_glint

mailto:tim@pi.pe

Sounds complex
But it looks like this....

tim@pi.pe - @steely_glint

mailto:tim@pi.pe

But the Signalling

Ah, yes, that.

 We do need a ‘cloud’ service for connection establishment
* Not trusted with private data or keys
 RDV server (web server on known public IP)
 Both ends connect to it over websocket
 Exchange setup messages
* Using hash of public key as an address (immune to iteration attacks)
* Devices ignore setup messages that aren’t from permitted peers.

* Public key is tested as part of DTLS handshake so RDV can’t be MITM

tim@pi.pe - @steely_glint

mailto:tim@pi.pe

How do they get throug NAT?

ICE i1s a WebRTC feature

* Uses a mix of tricks (simplified)
« STUN allows each end to learn public IP
 TURN service acts as a packet reflector if no direct path is available
* Setup messages contain discovered public IPs + private IPs + IPv6
* |CE tries all combinations of IPs + TURN until it finds a path that works

* |CE secured by otp exchange

tim@pi.pe - @steely_glint

mailto:tim@pi.pe

Metadata

Metadata collects Iin these places

 Webserver knows IPs + Times of usage

 STUN server knows IPs + Usage Time + duration
 TURN server knows user’s IP and Usage Time
 RDV server knows IPs, public keys of both ends

« KVM knows IPs, time,duration,public keys,keystrokes,video etc.

tim@pi.pe - @steely_glint

mailto:tim@pi.pe

What we haven’t done
Yet...

* Adversarial testing
* Fuzzing

e 3rd party code reviews

tim@pi.pe - @steely_glint

mailto:tim@pi.pe

Known Flaws

Things we don’t like but can’t fix

 Raspi has No secure boot - a passerby could swap sd cards in seconds.
- mitigation is probably a better case with the card inside
- or hot glue :-)

 (Gadget mode also supports usb ethernet emulation so a hacked Raspi could
MiTM traffic.

- This isn’t a bigger risk than a hacked pi using USB keyboard to change
routing tables

» Perfect place to install a keylogger....

 Have to trust the website that loads the page

tim@pi.pe - @steely_glint

mailto:tim@pi.pe

Think about security all the time

Security is compatible with usability

If you include it early enough in the process

Keep It In mind all the way through

Expose your design and developer teams to security thinking
EXxpose your security teams to design and product thinking

Compliance isn’t enough.

tim@pi.pe - @steely_glint

mailto:tim@pi.pe

FIn

Thanks for listening

* Contact tim@pi.pe or @steely_glint (twitter)

 Most of this is licensable for security cameras etc

e Questions?

tim@pi.pe - @steely_glint

mailto:tim@pi.pe
mailto:tim@pi.pe

