
Tim Panton (tim@pi.pe) (CTO pi.pe gmbh)

 How to build better more secure
KVM with off-the shelf hardware
An experiment in security-by-design

mailto:tim@pi.pe

tim@pi.pe - @steely_glint

Who
Tim Panton: CTO pi.pe GmbH

• Internet Security scanning service 20 years ago

• VoIP 15 years ago

• IoT secure stack for cameras - last 4 years

mailto:tim@pi.pe

tim@pi.pe - @steely_glint

Goal
Remote access to server assets

• Like the screen/kbd trolley you used to wheel around a DC

• But on the internet

• Plug hardware into hdmi + usb to get access

• Manage a firewall appliance - but not through it!

• Cheap low power arm servers don’t do LOM

• Easy to use

mailto:tim@pi.pe

tim@pi.pe - @steely_glint

Threat model
What are we protecting?  
What are we assuming?  
Protecting from whom?

• Protect Service (don’t provide new attack vectors)

• Protect Auth (don’t allow collection of passwords etc)

• Protect Data (don’t allow interception in flight)

• Assume ‘lazy but not evil’ users

• Assume untrusted infra structure

• Assume ‘semi secure’ location - e.g. DC rack with CCTV

• Main threat is external (over Network) from:

• Automated scans

• Active targeting by motivated individuals 
(assymentry: $1k buys a lot of motivation)

mailto:tim@pi.pe

tim@pi.pe - @steely_glint

Threat minimization
Three intersecting strategies

• Block known attack vectors (and adjacent)

• Buffer overun

• Type trickery

• Input validation

• Minimize attack surface

• Simplify interfaces

• Reduce optionality

• Minimize secret data usage

• Best practice

• Leverage standards

• Tooling, code etc

mailto:tim@pi.pe

Result
(Video)

• 1024x768 @30

• From hdmi Ubuntu x86

• To M1 Mac safari

• Via Raspi 4  
capturing hdmi 
and emulating USB mouse + kbd 

• ~1.5mbit/s bitrate.

tim@pi.pe - @steely_glint

Credit
2 Projects that led the way

• https://tinypilotkvm.com

• https://github.com/pikvm/pikvm

• Both use similar hardware (pi4) but stream Jpegs over http (over VPN)

• No code derived from either project - just inspiration

• Instead I leveraged |pipe|’s IoT Video stack

mailto:tim@pi.pe
https://tinypilotkvm.com
https://github.com/pikvm/pikvm

Big picture…

Server

HDMI

USBC

Video 
CaptureUSB3

USB2 Keyboard and mousehidg0 
hidg1

Gstreamer

|pipe| 
WebRTC 

Agent

H264 rtp

Mouse/kbd Emulation

Keys

Raspberry Pi 4

Web Browser with WebRTC

NAT/ 
Firewall

NAT/ 
FirewallPublic Internet

WebRTC

Big picture…

Server

HDMI

USBC

Video 
CaptureUSB3

USB2 Keyboard and mousehidg0 
hidg1

Gstreamer

|pipe| 
WebRTC 

Agent

H264 rtp

Mouse/kbd Emulation

Keys

Raspberry Pi 4

Web Browser with WebRTC

NAT/ 
Firewall

NAT/ 
FirewallPublic Internet

WebRTC

“Air Gap”

tim@pi.pe - @steely_glint

Air Gap (video)
No, not really but close….

• HDMI capture card ($14)

• Cheap, dumb, predictable, v4l2 compatible

• To linux it is a 1080p @30 camera device

• USB (although CSI interfaces possible)

• Pi has hardware h264 encoder that supports 1080p @30

• bitrate 10% of mjpeg in typical useage (~2mbit/s vs 20)

mailto:tim@pi.pe

Big picture…

Server

HDMI

USBC

Video 
CaptureUSB3

USB2 Keyboard and mousehidg0 
hidg1

Gstreamer

|pipe| 
WebRTC 

Agent

H264 rtp

Mouse/kbd Emulation

Keys

Raspberry Pi 4

Web Browser with WebRTC

NAT/ 
Firewall

NAT/ 
FirewallPublic Internet

WebRTC

“Air Gap”

tim@pi.pe - @steely_glint

Air Gap (keyboard+mouse)
No, not really but close….

• Pi 4 supports gadget mode on USB C port  
(also on usb of pi zero W)

• HID emulation

• Keyboard and mouse

• With config device appears as /dev/hidg{01}

• Simple write of 4 or 8 bytes to device produces 
kbd emulation

• Server can’t tell this isn’t a keyboard + monitor + mouse

mailto:tim@pi.pe

Big picture…

Server

HDMI

USBC

Video 
CaptureUSB3

USB2 Keyboard and mousehidg0 
hidg1

Gstreamer

|pipe| 
WebRTC 

Agent

H264 rtp

Mouse/kbd Emulation

Keys

Raspberry Pi 4

Web Browser with WebRTC

NAT/ 
Firewall

NAT/ 
FirewallPublic Internet

WebRTC

tim@pi.pe - @steely_glint

Transport Protocol -> WebRTC
Don’t roll your own cryptography or protocols!

• Available on all browsers

• No client install needed (so no new risks at client end)

• Well studied protocol

• E2E encrypted with self-signed x509s for auth

• Built for low latency/high quality video

• Used a lot for screenshares - so geared up for this

• WebRTC traffic is expected on networks

mailto:tim@pi.pe

tim@pi.pe - @steely_glint

WebRTC security properties
Default secure.

• No open ports until message exchange

• Open port is random

• Works behind NAT - so no IP to scan

• Opened port is protected by otp

• Selected port is verified with DTLS handshake

• DTLS extension uses key material to derive media session key

• Provided SCTP channels over DTLS for non-media data

mailto:tim@pi.pe

Big picture…

Server

HDMI

USBC

Video 
CaptureUSB3

USB2 Keyboard and mousehidg0 
hidg1

Gstreamer

|pipe| 
WebRTC 

Agent

H264 rtp

Mouse/kbd Emulation

Keys

Raspberry Pi 4

Web Browser with WebRTC

NAT/ 
Firewall

NAT/ 
FirewallPublic Internet

WebRTC

tim@pi.pe - @steely_glint

|pipe| WebRTC agent
Cleanroom implementation for small linux devices

• In Java because:

• Strong typing prevents many vulns

• Buffer overflow protection

• Stack smashing protection

• Mature ecosystem (tools etc)

• Performant on small machines

mailto:tim@pi.pe

tim@pi.pe - @steely_glint

Defence in depth
Extra steps taken in |pipe| WebRTC agent

• No reflection - config files can’t control object creation

• Input parser does string compares not regexps

• Only exchanges packets with known peers

• Only opens media sessions with permitted known peers

• Permitted peers must have public key in local keystore

• Acts as a proxy for local service - via sockets not libs

• GitHub dependency alerts for upstream CVEs

mailto:tim@pi.pe

tim@pi.pe - @steely_glint

Auth
Self signed Certs with proximity verification

• Auth is decentralized

• X509s created, stored and checked locally

• Exchanged using DTLS handshake

• Validated by nonce in a QR code (proof of proximity)

• QR shown on hdmi of Pi.

• QR scanned on laptop or phone/iPad

• Access can then be lent to other devices

mailto:tim@pi.pe

tim@pi.pe - @steely_glint

Proximity as proof of ownership
Things as tokens.

• Often we use centralized services to generate permission tokens 
Kerberos etc.

• In IoT we can use a Thing as a token.

• The owner is the first person to plug it in

• How does the device know it is you?

• Offers localized one time cryptographic handshake

• E.g scan a QR to prove you have Line of Sight

mailto:tim@pi.pe

tim@pi.pe - @steely_glint

Sounds complex
But it looks like this….

mailto:tim@pi.pe

tim@pi.pe - @steely_glint

But the Signalling ….
Ah, yes, that.
• We do need a ‘cloud’ service for connection establishment

• Not trusted with private data or keys

• RDV server (web server on known public IP)

• Both ends connect to it over websocket

• Exchange setup messages

• Using hash of public key as an address (immune to iteration attacks)

• Devices ignore setup messages that aren’t from permitted peers.

• Public key is tested as part of DTLS handshake so RDV can’t be MITM

mailto:tim@pi.pe

tim@pi.pe - @steely_glint

How do they get throug NAT?
ICE is a WebRTC feature

• Uses a mix of tricks (simplified)

• STUN allows each end to learn public IP

• TURN service acts as a packet reflector if no direct path is available

• Setup messages contain discovered public IPs + private IPs + IPv6

• ICE tries all combinations of IPs + TURN until it finds a path that works

• ICE secured by otp exchange

mailto:tim@pi.pe

tim@pi.pe - @steely_glint

Metadata
Metadata collects in these places

• Webserver knows IPs + Times of usage

• STUN server knows IPs + Usage Time + duration

• TURN server knows user’s IP and Usage Time

• RDV server knows IPs, public keys of both ends

• KVM knows IPs, time,duration,public keys,keystrokes,video etc.

mailto:tim@pi.pe

tim@pi.pe - @steely_glint

What we haven’t done
Yet…

• Adversarial testing

• Fuzzing

• 3rd party code reviews

mailto:tim@pi.pe

tim@pi.pe - @steely_glint

Known Flaws
Things we don’t like but can’t fix

• Raspi has No secure boot - a passerby could swap sd cards in seconds. 
- mitigation is probably a better case with the card inside 
- or hot glue :-)

• Gadget mode also supports usb ethernet emulation so a hacked Raspi could
MiTM traffic. 
- This isn’t a bigger risk than a hacked pi using USB keyboard to change
routing tables

• Perfect place to install a keylogger….

• Have to trust the website that loads the page

mailto:tim@pi.pe

tim@pi.pe - @steely_glint

Think about security all the time

• Security is compatible with usability

• If you include it early enough in the process

• Keep it in mind all the way through

• Expose your design and developer teams to security thinking

• Expose your security teams to design and product thinking

• Compliance isn’t enough.

mailto:tim@pi.pe

tim@pi.pe - @steely_glint

Fin
Thanks for listening

• Contact tim@pi.pe or @steely_glint (twitter)

• Most of this is licensable for security cameras etc

• Questions?

mailto:tim@pi.pe
mailto:tim@pi.pe

